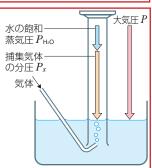
訂正		- □ →	訂 正 文						
ページ	行	<i>△</i>	n ii. A						
訂正 ページ 28	箇所	原	対						

訂正箇所		原	訂 正 文			
ページ	行	/A	n m A			
29	下	 混合気体の平均分子量 混合気体をただ1種類の仮想の分子からなる気体として考えたとき、その混合気体の見かけの分子量を、混合気体の平均分子量という。空気を窒素と酸素のみからなる混合気体(物質量比4:1)とすれば、混合気体中の窒素(分子量28.0)のモル分率は 4 (4+1) = 0.8、酸素(分子量32.0)のモル分率は 4 (4+1) = 0.2 となるので、空気の平均分子量 M は M = 28.0 × 0.8 + 32.0 × 0.2 = 28.8 (2) となる。 (2) となる。 (3) 酸素 9.6 g と窒素 2.8 gからなる混合気体がある。この混合気体の平均分子量を求めよ。(分子量は、N₂ = 28、O₂ = 32) (3) 気体 A 2.6 g と気体 B 4.2 gからなる混合気体 16.6 Lの全圧を27℃で測定したところ1.50 × 10⁵ Paを示した。この混合気体の平均分子量を求めよ。 	 ■混合気体の平均分子量 混合気体をただ1種類の仮想の分子からなる気体として考えたとき、その混合気体の見かけの分子量を、混合気体の平均分子量という。空気を窒素と酸素のみからなる混合気体 (物質量比4:1) とすれば、混合気体中の窒素 (分子量28.0) のモル分率は 4+1 = 0.8、酸素 (分子量32.0) のモル分率は 4+1 = 0.2 となるので、空気の平均分子量 M は M = 28.0 × 0.8 + 32.0 × 0.2 = 28.8 となる。 □111 酸素9.6 g と窒素2.8 g からなる混合気体がある。この混合気体の平均分子量を求めよ。(分子量は、N₂ = 28, O₂ = 32) p.29 の間 12 は p.30 の 7 行目に移動しました。 			

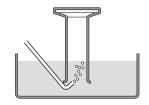
訂正箇所		原文	
ページ 行 30 中		$PV = nRT = \frac{w}{\overline{M}}RT$	(2
	● Z 発生 くい の 混合 気体 P _H 。を I	が成り立つ。 K上置換による気体の捕集と分圧 気体を 生させて容器に捕集する場合、水に溶けに い気体は水上置換を用いることが多い。こ とき、捕集された気体は水蒸気が飽和した 合気体になっている。したがって、捕集 本の分圧は、大気圧 P から水の飽和蒸気圧 からを引いたものになる。捕集気体の分圧 P_x とすれば、 $P_x = P - P_{H_2O}$ (25)	水の飽和 蒸気圧 P _{HO} 捕集気体 の分圧 P _x 気体 上記の圧力の関係が成立するためには、容器の内側と外側で水面の高さが同じである必要がある。
	例	題 6 右図のように、水素を水上置換で捕集したところ、27°C、9.96×10⁴Paの大気圧のもとで、その体積は0.83 Lであった。27°Cの水の飽和蒸気圧を3.6×10³Paとして、捕集した水素の物質量を求めよ。 【解】 容器内には、水素と水蒸気が混合しており、そのたがって、(水素の分圧) = (大気圧) - (水の飽和煮水素の分圧:9.96×10⁴Pa-3.6×10³Pa=9.60∶水素に対して気体の状態方程式 <i>PV=nRT</i> を適用し9.60×10⁴Pa×0.83 L=n×8.3×10³Pa·L/(K·rよって n=3.2×10⁻²mol	(気圧) となる。 × 10 ⁴ Pa レ,物質量 <i>n</i> を求めると

訂 正 文


$$PV = nRT = \frac{w}{\overline{M}}RT$$

(24)

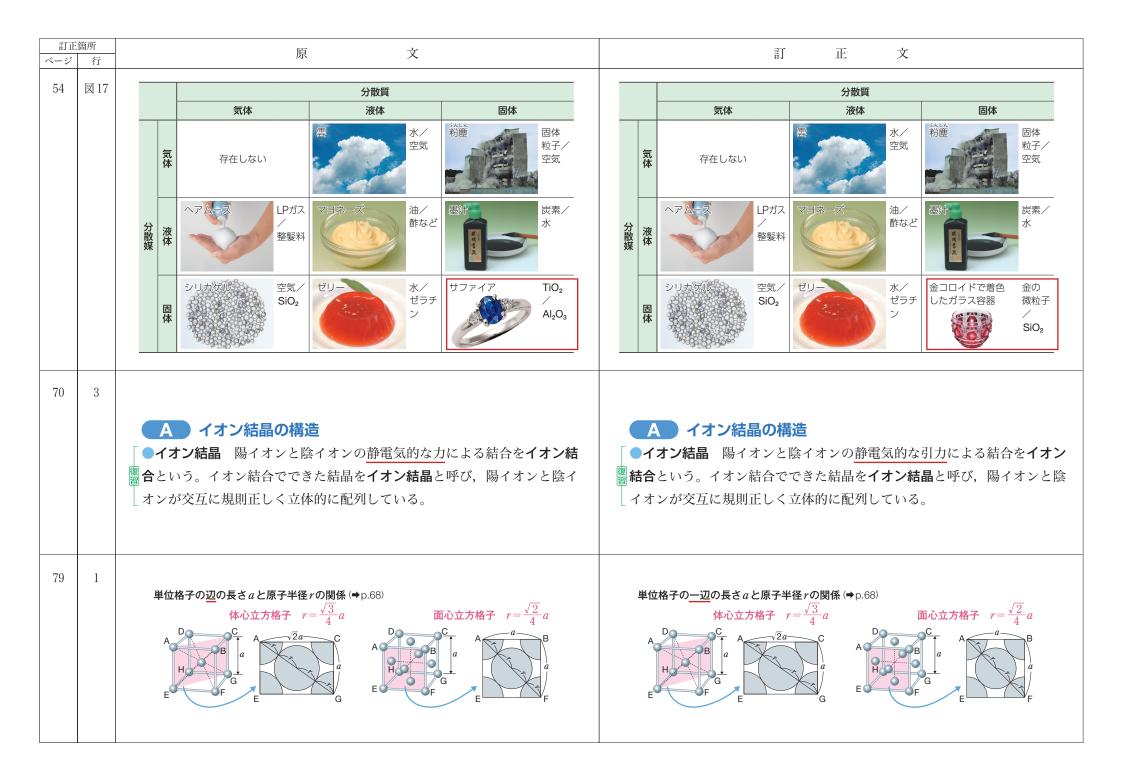
が成り立つ。


・水上置換による気体の捕集と分圧 気体を発生させて容器に捕集する場合、水に溶けにくい気体は水上置換を用いることが多い。このとき、捕集された気体は水蒸気が飽和した混合気体になっている。したがって、捕集気体の分圧は、大気圧Pから水の飽和蒸気圧 P_{H_2O} を引いたものになる。捕集気体の分圧を P_x とすれば、

$$P_{x} = P - P_{\mathsf{H}_{2}\mathsf{O}} \tag{2}$$

▲図5 水上置換による気体の捕集 上記の圧力の関係が成立するため には、容器の内側と外側で水面の 高さが同じである必要がある。

例題 6 右図のように、水素を水上置換で捕集 したところ、27℃、9.96×10⁴ Paの大気圧のも とで、その体積は0.83 Lであった。27℃の水の 飽和蒸気圧を3.6×10³ Paとして、捕集した水素 の物質量を求めよ。


【解】

容器内には、水素と水蒸気が混合しており、その全圧が大気圧とつり合う。したがって、(水素の分圧) = (大気圧) - (水の飽和蒸気圧)となる。

水素の分圧: $9.96 \times 10^4 \, \mathrm{Pa} - 3.6 \times 10^3 \, \mathrm{Pa} = 9.60 \times 10^4 \, \mathrm{Pa}$ 水素に対して気体の状態方程式PV = nRTを適用し、物質量nを求めると $9.60 \times 10^4 \, \mathrm{Pa} \times 0.83 \, \mathrm{L} = n \times 8.3 \times 10^3 \, \mathrm{Pa} \cdot \mathrm{L/(K \cdot mol)} \times 300 \, \mathrm{K}$ よって $n = 3.2 \times 10^{-2} \, \mathrm{mol}$

答え 3.2×10⁻² mol

p.29 の問 12 を p.30 に移動しました。それにより,p.30 図 5 を縮小し, 7 行目からの段落の字詰めを変更しました。

訂正箇所			÷r			
ページ	行	原	訂 正 文			
105	18 - 20	4 メタノールCH ₃ OH(気体)の燃焼熱は726 kJ/molである。また、二酸化炭素(気体) の生成熱は394 kJ/mol、水(液体) の生成熱は286 kJ/molである。これより、メタノール (気体) の生成熱を求めよ。	4 メタノールCH ₃ OH(液体)の燃焼熱は726 kJ/molである。また、二酸化炭素(気体)の生成熱は394 kJ/mol、水(液体)の生成熱は286 kJ/molである。これより、メタノール(液体)の生成熱を求めよ。			
503	右	② 240 kJ/mol ① ① $(\frac{1}{2}) + \frac{3}{2}O_2(\frac{1}{2})$ ② $(\frac{1}{2}) + \frac{3}{2}O_2(\frac{1}{2})$ ② $(\frac{1}{2}) + \frac{3}{2}O_2(\frac{1}{2})$ ② $(\frac{1}{2}) + O_2(\frac{1}{2})$ ② $(\frac{1}{2}) + \frac{1}{2}O_2(\frac{1}{2})$ ③ $(\frac{1}{2}) + \frac{1}{2}O_2(\frac{1}{2})$ ④ $(\frac{1}{2}) + \frac{1}$	② 240 kJ/mol ① $(\mathbb{R}) + \frac{3}{2}O_2(\mathfrak{A})$ ② $(\mathbb{R}) + 20$ ③ $(\mathbb{R}) + 20$ ② $(\mathbb{R}) + 20$ ③ $(\mathbb{R}) + 20$ ④ $(\mathbb{R}) + 20$			
131	中	Fritz Harber	Fritz Haber			
131	右上	Gilbert Lewis Carl Bosch Fritz Harber Svante Arrhenius Henry Le Chatelier Jöns Berzelius	Gilbert Lewis Carl Bosch Fritz Haber Svante Arthenius Henry Le Chatelier Jöns Berzelius			

訂正ページ	箇所 行	原 文	訂 正 文			
164	12 - 13	ハーバーの実験成功の報を受け、その工業化に初めて着手したのが、 $BASF$ (バーディッシュアニリンソーダ会社)である。合成触媒の探索を担当したミタッシュは、約 2500 種類の物質を約 6500 回もの試験を繰り返して調べ、四酸化三鉄 Fe_3O_4 に数%の Al_2O_3 と少量の K_2O を加えたときが、最も活性が高く、寿命も長いことを発見した。	ハーバーの実験成功の報を受け、その工業化に初めて着手したのが、ドイツの化学会社 BASF (Badische Anilin- $\&$ Sodafabrik) である。合成触媒の探索を担当したミタッシュは、約2500種類の物質を約6500回もの試験を繰り返して調べ、四酸化三鉄 Fe_3O_4 に数%の Al_2O_3 と少量の K_2O を加えたときが、最も活性が高く、寿命も長いことを発見した。			
189	22 - 23	$AgCl$ として沈殿した後, Ag_2CrO_4 の沈殿ができはじめる。この沈殿は <u>赤色</u> で,容易に目で確認ができるため, <u>赤色</u> の沈殿が生成しはじめる点を滴定の終点とし,加えた硝酸銀水溶液の体積から,塩化物イオンの濃度を決めることができる。この操作を 沈殿滴定 という。	AgCIとして沈殿した後、Ag ₂ CrO ₄ の沈殿ができはじめる。この沈殿は <u>暗赤色</u> で、容易に目で確認ができるため、 <u>暗赤色</u> の沈殿が生成しはじめる点を滴定の終点とし、加えた硝酸銀水溶液の体積から、塩化物イオンの濃度を決めることができる。この操作を 沈殿滴定 という。			
200	左上	液体ヘリウム はリニアモー ターカーに用 いられる。	液体ヘリウムはリ ニアモーターカー に用いられる。			
271	⊠ a	▲図a リニアモーターカー ニオブNbと チタンTiの合金は超伝導物質で、医療用の MRIやリニアモーターカーの超伝導磁石の コイルとして使用されている。	▲図a リニアモーターカー ニオブNbと チタンTiの合金は超伝導物質で、医療用の MRIやリニアモーターカーの超伝導磁石の コイルとして使用されている。			
281	図 11 右	超伝導磁石使用のリニアモーターカー	超伝導磁石使用のリニアモーターカー			

訂正ページ	箇所 行	原文	訂 正 文
335	図2		
		H R^1-C-OH H R^1-C-OH H H R^1-C-OH H H H H H H H H H	H H H H H H H H H H
337	18	●1,2-エタンジオール エチレングリコールとも呼ばれる。無色で粘性 ethylene glycol のある不揮発性の液体で、吸湿性がある。水と任意の割合で溶け合うが、ジエチルエーテルには不溶である。甘味があるが有毒である。自動車エンジン冷却用の不凍液や、プラスチックの原料などとして用いられている。	●1,2-エタンジオール エチレングリコールとも呼ばれる。無色で粘性 1,2-ethanediol のある不揮発性の液体で、吸湿性がある。水と任意の割合で溶け合うが、ジエチルエーテルには不溶で、有毒である。自動車エンジン冷却用の不凍液や、プラスチックの原料などとして用いられている。

訂正ページ	箇所 行			原	文		訂	正 文
489	上	●酸・塩基試薬			●酸・塩基試薬			
		試薬	モル濃度	質量パー セント濃度	つくり方	試薬	およその濃度	つくり方
		濃塩酸 希塩酸	12 mol/L 6 mol/L 2 mol/L	37% 20% 7%	市販の塩酸(密度1.18 g/cm³,約37%)を用いる。 濃塩酸と同体積の水を混合する。 濃塩酸1体積と水5体積を混合する。	濃塩酸 希塩酸	12 mol/L 37% 6 mol/L 20% 2 mol/L 7%	市販の塩酸 (密度 1.18 g/cm³、約37%) を用いる。 濃塩酸と同体積の水を混合する。 濃塩酸 1体積と水5体積を混合する。
		濃硫酸 希硫酸	18 mol/L 3 mol/L 1 mol/L	98% 25% 10%	市販の硫酸 (密度 1.84 g/cm³,約98%)を用いる。 濃硫酸 1 体積と水 5 体積を混合する。 濃硫酸 1 体積と水 17 体積を混合する。	濃硫酸希硫酸	18 mol/L 98% 3 mol/L 25% 1 mol/L 10%	市販の硫酸 (密度 1.84 g/cm³,約98%) を用いる。 濃硫酸 1 体積と水 5 体積を混合する。 濃硫酸 1 体積と水 17 体積を混合する。
		濃硝酸 希硝酸	13 mol/L 6 mol/L 2 mol/L	60% 32% 12%	市販の硝酸(密度 1.38 g/cm³, 約60%)を用いる。 濃硝酸 1 体積と水 1.2 体積を混合する。 濃硝酸 1 体積と水 5.5 体積を混合する。	濃硝酸 希硝酸	13 mol/L 60% 6 mol/L 32% 2 mol/L 12%	市販の硝酸 (密度 1.38 g/cm³,約60%)を用いる。 濃硝酸 1 体積と水 1.2 体積を混合する。 濃硝酸 1 体積と水 5.5 体積を混合する。
		氷酢酸 希酢酸	17 mol/L 2 mol/L	98% 12%	市販の氷酢酸 (密度 1.05 g/cm³、約98%) を用いる。 氷酢酸 1 体積と水7体積を混合する。	氷酢酸 希酢酸	17 mol/L 98% 2 mol/L 12%	市販の氷酢酸 (密度 1.05 g/cm³,約98%) を用いる。 氷酢酸 1 体積と水7 体積を混合する。
		水酸化ナトリウム水溶液	6 mol/L 2 mol/L	24% 8%	水に水酸化ナトリウム 240 gを徐々に加えて, 1L とする。 水に水酸化ナトリウム 80 gを徐々に加えて, 1L とする。	水酸化ナトリ ウム水溶液	6 mol/L 24% 2 mol/L 8%	水に水酸化ナトリウム 240 g を徐々に加えて, 1L とする。 水に水酸化ナトリウム 80 g を徐々に加えて, 1L とする。
		濃アンモニア水 希アンモニア水	1	28% 10% 3%	市販のアンモニア水(密度0.90 g/cm³, 約28%)を用いる。 濃アンモニア水1体積と水1.5体積を混合する。 濃アンモニア水1体積と水6.5体積を混合する。	濃アンモニア水 希アンモニア水		市販のアンモニア水 (密度 0.90 g/cm³, 約28%) を用いる。 濃アンモニア水 1 体積と水 1.5 体積を混合する。 濃アンモニア水 1 体積と水 6.5 体積を混合する。